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TECHNICAL MEMORANDUM

VEHICLE HEALTH MANAGEMENT USING ADAPTIVE TECHNIQUES--
CDDF FINAL REPORT (No. 92-12)

I. INTRODUCTION

Vehicle health management (VHM) has become a term which has seen tremendous expoo

sure during the last few years, The importance of VHM has always been emphasized, but its defi-
nition has remained enigmatic. A definition of VHM in this document is proposed in terms of mission
Success as:

Vehicle health management encompasses all processes that have pertinent and
positive effects on the success of a mission.

VHM includes all phases of a mission: preliminary design processes, design and test pro-
cesses, qualification processes, prelaunch checkout, flight, and postflight checkout. VHM includes all

disciplines: propulsion, electronics, structural, etc. A key aspect of VHM is automating manual

operations tasks. Automation can be applied to all phases and disciplines of VHM, yielding tremen-
dous savings in operational cost and reductions in operations time.

Automation can be implemented using classical methods, expert systems, or other types of
techniques. This document summarizes Center Director's Discretionary Fund (CDDF) research that

investigated automation techniques. Designs using a combination of cognitive computing methods
are proposed and tested. A subsystem, space shuttle main engine (SSME) vibrational data
analysis, is selected as the testbed.

II. PROBLEM STATEMENT

iii]_

A. Selection of Test Case

In order to implement an automated system and to prove feasibility, a set of criteria was
determined to select a system. These criteria were:

1. Real Case -- The test should be based on real application, not simulation alone.

2. Human Knowledge Availability -- There is existing human knowledge, or there are
experts in the field.

3. Data Availability -- Data is readily available for tests and verification.

4. Potential Benefits -- Benefits can be realized in near future and can be proven to enhance
present ways of doing business.

5. Feasibility -- The task should not require inordinate cost and time.
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After considering many candidate systems, SSME vibrational data analysis was selected.

This system seemed to fit all criteria well. There is human expertise available, yet the expertise has

been very difficult to document and to automate. A massive amount of engine data is available locally
at NASA/Marshall Space Flight Center via computer network. Furthermore, automation of such
tasks could result in significant reduction of manpower and time.

•i/
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B. Space Shuttle Main Engine Diagnostics

1. Background. During the development of the SSME, significant progress has been made by
both NASA and the aerospace communities in improving the diagnostic evaluation of high frequency
dynamic data. Fast and reliable evaluation of such data is crucial to the space shuttle operations

program for preventing catastrophic engine hardware failures; moreover, reliable diagnostic eval-
uations can extend scheduled maintenance intervals of major components such as the high-speed

turbopumps. Dynamic assessment of the SSME is very challenging due to the computational and
manpower intensive nature of the data acquisition and signal processing operations. Furthermore,

the acquired dynamic signatures taken from various locations throughout the engine system can be

very complex to analyze. Current SSME dynamic data processing and evaluation are performed

postflight or following ground test with a typical diagnostic turnaround time of approximately 1 day.
This primary evaluation can be improved upon significantly by automating manual analysis tasks.

One such task involves the evaluation of SSME high pressure oxygen turbopump (HPOTP)

dynamic data for bearing distress frequency content. The primary failure mode for HPOTP bearings is

uneven ball wear, and cage frequency is used to detect the characteristic beating defect. Searching
for the cage frequency content in high frequency dynamic test data is difficult due to the character of

the SSME HPOTP dynamic environment as sensed by externally mounted transducers. Analysts
must frequently contend with structural, combustion, and electronically generated noise which mask

the cage indicators. Also, feedthroughs from the other three SSME turbopumps must be considered.
When wear indication is observed by the externally mounted transducers, substantial ball wear has

already taken place. Therefore, any indication of bearing cage or cage harmonic frequency content in
SSME HPOTP dynamic data is justification for removing the unit from the flight inventory.

Spectrograms, commonly referred to as waterfall plots, are often used to detect cage fre-

quencies in high frequency dynamic data channels. The cage frequency, along with subsequent har-

monics, reflect nonuniform bearing rolling element diameters. 1 However, monitored HPOTP dynamic
data channels frequently contain several other discrete and random narrow-band components which

can coexist or mask predicted cage frequency signal content. Synchronous frequency (SF), i.e., fun-
damental rotor speed, and its harmonics along with structural and hydrodynamic signals contribute to
the noise.

Decisions made by analysts are determined by their ability to distinguish anomalous cage
frequencies. One key aspect of this effort is the use of analysts" cognitive knowledge. Locations of

cage and synchronous frequencies, and their relations to the thrust level changes are understood by
analysts based on the past experience. For example, an expert may look for cage frequencies with-
out complicated numerical computations by simply scanning the hard copies.

2. Preliminary Analysis. After several interviews with analysts, it became obvious why
automation of such processes is difficult to achieve. First of all, the analysts' decision may not be

conclusive. The decision is often subjective, and at times there are differences in analysts' opinions.
Furthermore, decision criteria have not been well established.
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To further illustrate the decision process, two cases of actual engine data are presented. The
first case is data with anomalous cage frequency as shown in figure 1, where the x and y axes denote

frequency (in Hertz (Hz)) and time (in frame counts), respectively. In simplicity, the cage frequency
determination can be linguistically described by an analyst as below:

Inspecting the plot at approximately 450 Hz, one can locate a series of very prominent

peaks. These peaks are the representation of the SF. The 2C (second harmonic cage
frequency) is found as a series of peaks between 390 to 410 Hz (approximately

2×0.43×SF). 2 As the thrust level changes, SF changes in proportion.

frame count p2485w14 gain=20 May 13, 1993
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Figure 1.
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Anomalous case (2485w145).

600Frequency (_Sz 9

The second case, as shown in figure 2, is a nominal case. A similar procedure is used to
determine its health. The SF is located and the cage frequency is searched for. Unlike the abnormal

case, there are no consistent cage frequency peaks that vary with the SF. The same procedure is

repeated to find the harmonics of the cage frequency. This case is found to have no anomalous peaks
at any cage frequencies.

III. APPROACH AND METHODS

Further analysis of the human expertise allows a breakdown of the task into smaller and

simpler sequential tasks as shown in figure 3.

3
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Figure 3. Sequential breakdown of the expertise.



A. Discrete Fourier Transform

The discrete Fourier transform (DFT) defines the relationship between the time domain data
and their representation in the frequency domain. The definition of the Fourier transform of a con-
tinuous signal x(t) is defined as:

X(f) = F{x(t)} = f x(t) exp (-j2rt f t)dt

The inverse transform is defined as:

x(t) = F-_{X(f)} = f X(f) exp (j2 ztft)df .

These valuable relationships deal with continuous infinite length and infinitely many harmon-

ically related complex exponentials. These relationships can be extended to sampled data. For a

sequence of data that is uniformly sampled, DFT can be used efficiently. For DFT, the following
equations are used:

N-1

Analysis Equation: X[k] = ___ x[n]W_

n=0

N-1

Synthesis Equation: x[n] = (1/ N)___X[k]W_ _

k=0

where

Wn = e -j(2_z/N)

The relationship between frequency resolution, df, size of frame, N, and sampling frequency,
dr, is defined as:

df = 1/(N×dt)

Since the engine vibrational data are sampled at 10,240 Hz, in order to achieve df= 2.5 Hz, the frame
size, N, is set to 4,096.

B. Determination of Synchronous Frequency

The SF plays a very important role since cage frequencies are located based on SF. Since the

SF is the most prominent set of peaks, one way to find the SF is to look for the maximum. However,

typical cases have shown that the problem is not this simplistic. Two problems arose: (1) due to
discretization error, the SF seemed to fluctuate about the expected value; and (2) in some cases, SF

does not manifest itself for a duration of time due to very high noise level, lack of synchronous
response (i.e., very quiet pump), or a combination of both. The two problems mentioned above are
illustrated in figure 4.

5
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Figure 4. Typical error in finding SF.

Discretization errors, which are often manifested as small transient peaks, can be minimized
by using various digital filters, for example, averaging or the Butterworth low pass filter.

For the second case, as shown in figure 5, when the SF is not well defined, further investi-
gation is needed. Figure 5 displays the first 20 frames of 2485w145. The SF is not well established in

the first 10 frames, thus creating incorrect maximum indices. One method of dealing with the lack of

definition is to ignore the engine data until an obvious SF is found. This method can be used only if it
is assured that SF is found for most of the cases. This "ignore-if-not-sure method" was not con-

sidered since loss of information may be too great when SF is not manifested for a significant
duration. An alternate set of algorithms is investigated to deal with the ill-defined area. Two of such

algorithms take into consideration the analysts' a priori knowledge on the SF: credibility and corre-
lation.

1. Credibility Filt¢r. The first approach deals with the credibility of a data point using a
simple credibility filter. A set of credibility filters is constructed based on the analysts' experiences.
A set of trapezoid filters is generated. The center of the trapezoid filter is defined by a priori knowl-

edge. As a data point falls away from the center, the data point becomes less credible. As the data
point gets closer to the mean, the better credibility the data point will have. A series of trapezoid
credibility filters were defined as shown in figure 6.

The credibility is defined as follows:

1.0 if ABS(mean-data) =< 0.1 W
CR = 0.0 if ABS(mean-data) > 0.5 W

1-(5/2 W)(ABS(mean-data) -0.1 W) otherwise

where W is the width of the filter, mean is the mean of the filter, and ABS is absolute value.

Using a previous model, a set of predicted SF is calculated based on the thrust level schedule

(fig. 7). The predicted SF is used to construct a series of credibility filters as shown in figure 8.

6
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After the credibility of each data point is determined, a simple rule is implemented: the less
credible a data point is, the more important the a priori information is. As the data point becomes

more credible, the less dominant the a priori knowledge is. This rule implementation is illustrated as
figure 9o

{_ Measured _

Max Index _

r 1

( E  mat a5__1 V
i Max Index I
k_ (a priori)

New Index

• ;/:i_ _.

i:

Figure 9. Credibility implementation.

Using the credibility filter with W = 10, the results are as shown in figure 10. It seemed that

the level of the high pressure fuel pump was as high as the SF such that maxima found fluctuated
between the level of SF and the high pressure fuel pump. Figure 10 illustrates a case where a cred-

ibility filter effectively eliminated erroneous information. Figure 10a is a plot of maxima as found. By
comparing against the expected SF, a credibility plot is generated as shown in figure 10c. Finally a

new set of SF is found. The absolute value of the difference between the expected values and the
processed values is shown in figure 10e.

Even though the credibility filters were effective for many of the cases, some data fries

resulted in less than satisfactory results. Two factors contributed to the poor results. One reason
was a linear model that deviated significantly from the actual data. It seemed that the linear model to
calculate the center of the trapezoid filter was not accurate. This model error resulted in low credi-

bility, thus causing a large compensation in the SF level, which became another source of error.
Another drawback in the credibility filter was its inability to remove discretization error. Dis-

cretization error, which is manifested in the form of small transient noise, maps onto an approxi-

mately equal credibility value as the noiseless signal. In order to minimize this type of erroneous

reasoning, more elaborate decision criteria had to be implemented.

2. Correlation. The second approach to find SF considered an overall shape of the expected
SF and the found SF. Pearson's 3 r is used to determine the correlation between the found SF and the

expected SF. If linear correlation exists, then a new SF is generated based on the expected SF and
the actual data (fig. 11).

:,
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By use of Pearson's 3 r coefficient, correlation coefficients of two sets of parameters are found

(see equation 2.1 of reference 4). Its linear correlation threshold (fig. 12) varies with the sample
size. For a set of data pairs, {(x,y)}, whose mean and standard deviations are/z and o" respectively,
Pearson's r is defined as:

(IAx-Xi)(tAy-Y i)
r =

i.....i

i=1 ax(ryN
(equation 2.1 of ref. 4)

linear no linear linear
correlation correlation correlation

0.0

decision points

+1.0

i

Figure 12. Linear correlation regions.
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Decision points are given in absolute values, and the value is inversely related to the size of
samples. An example is given in table 1. 4 For example, with the sample size of 100, the decision
points are + 0.196 with 95 percent confidence.3

Table 1. A guide to use Pearson's 3 r coefficient. 4

Sample Size Decision Pt Sample Size

5 0.878 20

10 0.632 50

Decision Pt

0.444

0.279

Sample Size

80

100

Decision Pt

0.220

0.196

An algorithm to use the correlation coefficients is described as follows:

1. Find potential SF by using maxima function.

2. Compare the found SF against the thrust level schedule.

o If they are not linearly correlated, use alternate methods (such as credibility filters, etc.).

If the found SF and expected SF are linearly correlated, then find a coefficient using
equation (2.2).

N

N _=1 Ze(i)
(Equation 2.2)

where Lf(/) is the ith thrust level found Le(0 is the ith expected thrust level.

4. Multiply k to the expected thrust level to acquire a new SF.

Figure 13 illustrates the process described previously. The lit'st is the found SF. The

expected SF shows two constant thrust levels. When the found SF and the expected SF are found to

be linearly correlated, then the average value, k, is derived using the equation (2.2). The value, k, is
then multiplied to the expected SF to generate the new SF.

Raw SF (maxima found)
50

0 100 200
frame

. Newer and Better SF

.... t

300

100 200 300
frame

Expected SF of 2495ht13 & VlN9309

50, ! ; •

___ 45 ............. !............. { .............
40

0 100 200 300
frame

12

Figure 13. Correlation coefficients results (2495ht135).



(! H

i!i:::iiiiiii!iiii:_!ii_:/

i_i:+/::ii!/ii/¸

:ii!̧ _i:i:!!: :: ;

: i_:2 i_ill

iii_i:_ii_i;!!;

i/il

This method is simple to implement, and it proved to be less noisy than the credibility
method. Effectiveness of this algorithm is due to the fact that correlation deals in terms of similarity

in shape. Therefore, even when the numerical values of SF are not accurately predicted, the overall
shape of the predicted SF can be used to generate a clean SF.

C. Cage Frequencies

The approximate location of the second harmonic cage, 2C, frequency is found by multiplying

the SF by a factor of 0.86 (= 2×0.43). In most cases, up to 7C can be investigated. For simplicity, 2C
and 3C are included in each file for testing. Since the SF is determined in terms of indices as

described in section B.2, chapter II, cage frequencies are derived in terms of indices as follows:

Definition:

SFi as the index of SF,

2Ci as the index of 2C,

3Ci as the index of 3C,

StF as the start frequency of a data file in Hz,

SF as the synchronous frequency in Hz,

df as the frequency resolution in Hz,

2C, 3C as the two times and three times the cage frequencies respectively in Hz.
The first index is 1.

Frequency index, Fi, can be expressed in terms of frequency, F, and StF,

:iii

By definition,

F = (Fi- 1) xdf+ StF

2C = 2x0.43xSF

substituting in SF using equation (1),

(1)

H • L

ii. ¸ •

= 0.86x((SFi-1)xdf+StF)

Then 2Ci= (2C-StF)/df+l, substituting in equation (2),

= 1/dfx(O. 86((SFi-1)xdf+StF)-StF)+ 1

= 0.86SFi-(1-O.86)/dfxStF-0.86+ 1

(2)

Ui

!i_@

:5

= 0.86SFi-O. 14/dfxStF+O. 14

By the same method, 3Ci= 3x0.43xSF reduces to

= 1.29xSFi+O.29/dfxStF-1.29+l

(3)

(4)

13
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Actual values of 2Ci and 3C/are the closest integers to the calculated values. For example, if

a file starts at 375 Hz, where the index is 1, and SFi is determined to be 35 (or 460 Hz) with the
frequency resolution is 2.5 Hz, then

2C/= 9 ( or 395 Hz),

3Ci = 89 ( or 595 Hz).

Using equations (3) and (4), locations of the expected 2C and 3C are found as shown in figure 14.

Indices

100

90

8O

70

60

5O

40

30

20

10

0

Indices of SF, 20, and 3C

. 3C indices //_

SF indices y

_ , 2C indices /'--

i i i i i i

50 1 O0 150 200 250 300

frame numbers

Figure 14. 446ht45 SF, and expected 2C/3C indices (raw data without filtering).

i

D. Anomaly Detection

1. ANN Approach. To detect anomalous peaks, artificial neural networks (ANN) are devel-

oped. Various configurations are considered to optimize the design.

Several tests using various ANN configurations were performed to find an optimal configu-
ration. Most of the tested cases used a frequency resolution of 2.5 Hz since this frequency resolution
value is most often used by analysts. One case used the 1.25 Hz case. For the neural network

training, MatLab TM (MathWorks, Inc.) and NETS TM (NASA Johnson Space Center) were used.

Both of these software tools utilize the back-propagation algorithm for training.

1.1. Initial Training and Propagation Results. The input to the ANN was 13 points centered
about the expected cage frequency. To generate a training set for the neural networks, two

approaches were considered. The first approach was to make manual decision on each individual

frame of a data file. This approach was done by manually examining each frame of data to see if an

14
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obvious anomaly existed. Understandably, this approach required considerable manpower and

patience to generate a sufficiently large training set. This approach involved manually labeling normal
and abnormal frames. First of all, an abnormal data file, 2485PB45, was chosen. The file was nor-

malized between zero and one, and the decision was manually made by a human operator on each
frame. The decision assignment was 0.9 for nominal and 0.1 for anomalous frame. This task was

quite subjective, and at times proved to be very difficult to determine its assignment. There were
many cases where the decision of anomalous/nominal was very difficult. However, it was assumed
that if "enough good information" is given to the neural network, the network should be able to learn

the desired patterns. A total of 207 frames were individually evaluated and tagged. Seven artificial

sets were added to accentuate the importance of the middle of the frame. Over all, the training file

included 149 anomalous frames and 58 nominal frames. The neural network consisted of 13 input
neurons, 8 hidden layer neurons, and 1 output neuron. After several iterations, the root-mean-

square (RMS) error was reduced to 0.11, and the training was halted. The training set was used to

verify the learning. The results were almost inconceivable. Out of 207 frames, there were only 2
errors. This accurate mapping seemed surprisingly good due to the subjective nature of the manual

decisions. However, good training did not seem to translate to a better design. When tested using
other files, this network failed. It seems that the network has learned some specific idiosyncrasies
about the training set, and the learned behavior was not able to generalize. This conclusion was

verified further by reexamining the training file. One of the artificial frames was mistakenly labeled

wrong, and the neural network mapped this frame just as it was trained. This ability to converge to
the training set was impressive, but the lack of generalization was of serious concern. More tests

will be required to characterize this behavior using larger sets of training data.

_:!?ii__

!,

, i¸

i!i ii_ ,

_il v •

The second approach was to select one data file with nominal data and another data file con-

taining anomalies. Then each file is tagged as normal (0.9) and abnormal (0.1). The objective of this
approach was to see if the ANN could learn by itself the inherent distinction between normal and

abnormal cases. This approach to labeling each data file as a whole must contain "enough amount of
good information." On many occasions, the cage frequencies do not appear for the full duration of the

test. Therefore, a subjective decision should be made whether a file includes "enough" good infor-
mation.

A file, 2474wld0, was used to propagate and to test the trained network using the file

labeling. The file included 13 points centered at the calculated cage frequencies (2C and 3C). The 13
points were normalized such that the lowest value was set to 0, the highest 1. When the data were

propagated, the results seemed to be inaccurate. Defining the correct response to be less than 0.2,

out of 250 frames, the ANN found 3 hits for 2C case, and 10 hits for 3C. It was hypothesized that the
reason for the low hits was due to the skewing of the peaks. Each data set was shifted left one at a

time, and 0.5 was added as the 13th element. Table 2 lists the results compiled with shifting.

Table 2. Network testing with shifts.

shift left 0
shift left 1

shift left 2
shift left 3

2C 3C

3

3
34

4

10

28

15
N/A

It became apparent that the trained network was very sensitive about the position of the
peaks. Two techniques were proposed to enhance better results:

15



1. Shift and propagate

2. Peak detection using three points.

These two methods bear a similarity in that consistency of peaks, and not the exact location,
is sought. As long as there are peaks at the same frequency location, the network would work well
regardless whether the location of the peak is 410 Hz or 412.5 Hz.

1.2. Artificial Neural Network Design

a. Shift and Propagate. A network with 13 input nodes with varying sizes of a hidden layer is
trained with two 1.25-Hz files: 2485w145 (anomalous) and 2495w145 (nominal). For testing, 21 nor-
malized points were selected from each spectral frame centered at the expected frequency. First, 13
points were entered into the trained network for propagation. Then the 21-point data set is shifted

left, and 13 points are again input to the trained network. This continues until the last 13 points of
the set are used for propagation (fig. 15).

• I2

set #8

set #9

i_ '_

Figure 15. Shifted input data sets.

The number of hidden nodes was arbitrarily changed from zero to six. This "shift and propa-

gate" method generated 13 outputs per input frame. At the end of each file, all shifts, zero to eight
shifts, are compared and then the maximum number of anomaly detection was recorded. Then a

decision is made whether the data had anomalous characteristics. A network with no hidden layer
seemed to work the best. The synaptic weights are given in table 3.

Table 3. ANN No. 1 neuron weights (bias = 3.4).

# 1 2 3 4 5 6 7 8 9 10 11 12 13

-15.3 -10.4 -22.3 -5.8 -10.5 -6.2 +14.1 +3.3 +3.2 +4.6 -10.0 -22.2 -12.3
i

Table 4 delineates the results using this neural network. The last column represents an

analyst's opinion. The ANN performed well except in the engine files on 446. The analyst believed
that there was a very probable anomaly, but the neural networks show nominal condition. The

analyst's decision, it turns out, was based on 3C (three times cage frequency) information, and the
neural net was propagated using only the 2C data. This fact necessitated enhancement to include
other cage harmonics.

16
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Table 4. ANN No. 1 results (shift and propagate).

File Name

1595ht135

1595pb45
1595w145

1675ht135

1675pb45
1675w145

2485ht135

2485pb45

2485w145 (train)

2495ht135

2495pb45
2495w145 (train)

446ht135

446pb45
446w145
446wld0

449ht135

449pb45
449w145

ANN Recognition

23
11

5

8

8
34

34

35

78

6
12

5

ANN Decision

max= 23,

max = 34,

max = 78,

max = 12,

5

6
5

5

6
9

23

max= 12,

max = 23,

Analyst's Decision*

2

5

3

(see. 3C case)

4

* Note: Analyst's decision is denoted 0 to 5, where 0 represents normal data and 5 repre-
sents highly recognizable anomaly.

b. Rotate and Propagate. An artificial neural network with 13 input neurons, 8 hidden layer
neurons, and 1 output neuron was trained with two 2.5-Hz files: 446ht13L (anomalous) and
2495ht13L (nominal). These two files are generated using the Pearson's r and linearization tech-

nique as described in section III.B.2. Then the 3C file from 446ht13 was used for consistent peaks
(figs. 16 and 17).

The training was done using back propagation with various learning rates. The output

assignments were 0.1 for the nominal case and 0.9 for the anomalous case. The first training set
consisted of the above two files appended consecutively. Each file contained 252 timeframes with

normalized magnitude to have the maximum magnitude of 1 and minimum of 0. Training a neural net-
work involves fairly mundane tasks of selecting transfer functions, hidden layers, transfer functions,

etc. Various learning rates were used ranging from 1 to 0.001. High learning rates seemed to incur

rapid changes, usually resulting in fluctuations, but overall error did not seem to get smaller. It
seemed that a learning rate of 0.01 allowed a reasonable training point. The transfer function used for
this training was the log-sigmoid function (figs. 18, 19, 20).

The summed squared error seemed to have a steady decline for the first 300 epochs. One
aspect of the learning rates was of concern. If the neural network was presented with 252 of the

anomalous frames first, would the network prematurely converge before nominal data can be pre-
sented?

17



frame count

(1 frame = 0.4s)

300
3C 446ht13

20O

100

0
0 5 10 15 freq

index

Figure 16.

frame count

(1 frame = 0.4s)

Anomalous file (446ht13L) for training.

250

20O

150

100

5O

0
0

2C 2495ht13 from CredibleSF1 !

' ' freq
5 10 15 index

18

Figure 17. Nominal file (2495ht13L) for training.



logsig (n)

Log-Sigmoid without bias

! +1

logsig (n+b)

hog-Sigmoid with bias

Figure 18. Log-sigmoid transfer function.
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Figure 19. Learning rate = 1. Figure 20. Learning rate = 0.01.
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Would a mixed training set perform better? With these questions in mind, 400 out of 504 frames

were randomly selected and swapped. Using the same learning rate of 0.01, a new learning rate was

performed. There was a faster reduction of summed squared error using the randomly swapped input
file. And at 1,000 epochs, the error was reduced to approximately 250, as opposed to over 300 for the

nonswapped case. After 2,000 epochs the training stopped (figs. 21 and 22) (see appendix A for the
weights and biases).

__ 10 _

tO

lO 0

2 i._er( 13,B,I ) Ir-O.O01 no swap 4/28/94

i
5QO 10100

Figure 21.

,_'oo 20'o0 _'oo
Epoch

Sequential training.

10=

UJ

1

10'
o

2 Layer(13.8.1 ) Ir=O.O 1 swap 400 frames 5/2/94

200 400 6 O

Figure 22.

8_o ,o'oo12'oo_o ,6'oo18'oo_ooo
Epoch

Alternate training.
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A hit is defined to be a propagated value greater than or equal to 8.5 and less than 9.5. Initial

propagations indicated that the network was very sensitive to the magnitude and location of the
peaks. For example, when raw data are propagated without normalization, there were zero hits.

Also when the peaks were shifted, the results were less than satisfactory. Using these obser-
vations, all data sets were scaled such that the maximum number in the file would be 1.0. In addition,

the 13 data points were rotated and propagated to find consistent peaks (fig. 23). The results are
summarized in the table 5.

/!

n!5+ •

• • ii

II!CI
i+ i_i

%!iilk

ij _ 5i _

_i_

i_

OO000®OO0 000 •

Figure 23.

Table 5.

Rotate and propagate.

Rotate and propagate.

File Name

1595pb45
1595w145

1675ht135

1675pb45
1675w145

2495ht1351

:Tralning Set

2495pb45
2495w145

446ht135

:Training Set

446pb45
446w145

446wld0

ANN 2C

21
20

17
5

34

14

11

19

14

19
11

26

Hits ANN 3C Hits

37
5O

13

21
34

148

105

164

123

29

92

17

ANN Decision

max = 21,50

max= 34,34

max= 19,148

max= 26,123

Experts
Decision*

2

2

* Note: The expert's decision is denoted by 0 to 5, where 0 represents normal data and 5
represents a highly recognizable anomaly.

Inspection of the results, as shown in table 5, seemed to indicate a correlation between the

peaks and the hits. A high number of hits represent a consistent series of peaks. The files on test

2495 included a high number of hits in the 3C area. These hits were later identified by experts as the
high pressure fuel pump peaks. The neural net was able to recognize peaks, but the network could

not make a distinction between the 3C and other similar peaks. Further investigation is needed to
find a better solution to this problem.

c. Peak Detector. This peak detector design utilizes an assumption that a definition of

"peak" can be taught to the artificial neural network. In order to achieve this learning rate, two files,

2O
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2485w145 and 2495w145, were used. Instead of providing 13 points, the peak detector network was

provided with 10 frames of 3 points from the two files. If there was an anomaly, the peak would

appear consistently at the second (or middle) point of each frame (fig. 24). In addition to the purely
geometric definition of a peak, by providing 10 frames of data, the neural net was to learn about sub-
tleties of temporal relationships between frames.

I• • _1 e • oleo • • • oeeoe log elle • OllO • • I
frame #1 frame #2 frame #9 frame #10

Figure 24. Peak detection using 10 frames.

The results using the peak detector seemed accurate. For 2473w10, the 2C area was believed
to be a 60-Hz line noise harmonic. This belief is based on the fact that the 60-Hz harmonic is inde-

pendent of the thrust level changes. Thus, as the thrust level changes, the 60-Hz harmonic will not
fluctuate. Since the neural network was not trained to differentiate this case, the network recognized

the 60-Hz harmonic as 2C. However, the network correctly recognized 3C data: Based on these

findings, the engine was found to have cage frequencies by the network as was the case by the

experts. Table 6 delineates the results. Under 2C and 3C columns, most likely cage frequency values
are listed. Under No. of Hits, the number of hits of the corresponding frequencies are listed.

Table 6. Peak detector.

No. of No. of

File 2C Hits 3C Hits ANN Expert*

i,_,ill

iiiii_,i!i_iill_i

iilii! i!

:_ :ii_ :i̧

H

_i_ i_i _

•_, !i!i i •¸

1595ht135
1675w145

2473w10
2485w145

2495w145

446wld0
449w145

420

400 (398)

418 (420)
403

None

393
4O8

3O

77 (48)

63 (121)
110

32
42

None

None
625

None
593

588

610

58

167
40

36

Y

Y
Y

Y

N
Y

Y

2

2
4

5

0
3

4

* Note: 0 indicates normal, and 5 indicated obvious abnormalities.

As was in the case of rotate-and-propagate, file 2495w145 seemed to have consistent peaks
at 593 Hz, which is the high pressure fuel synchronous feedthrough. The artificial neural network
parameters are listed in appendix A.

2. Discussion of Results. Understanding results from an artificial neural network may be a
difficult task, but a necessary one if this network is to be used in a real environment. It may be

almost impossible to understand the full spectrum of ANN capabilities and limitations, but in this

section, an attempt was made to discover the capabilities of the trained artificial neural network.

This implementation of the statistical maxima detection involves algebraic count of the
maxima at each index. This technique verified that the trained network was indeed sensitive to the

location of the peaks. Figure 25 is a nominal case without cage frequencies. The statistical distri-

bution has minimal fluctuation. On the other hand, figure 26 is an anomalous case.
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Statistical distribution of anomalous case (446ht135:3C).Figure 26.

This technique could be further developed into another tool for determining anomalies within

the engine. The underlying hypothesis is that the noise floor is white. In laymen's term, a probability
of an occurrence of a peak at one frequency is equal at any frequency. If cage frequencies do not exist,

then the maxima found in the 13-point data file should not exhibit any prominence at one frequency. If

cage does exist, then the maxima found should be located at or near a specific index. One very
attractive property of this algorithm is its simplicity. Its simplicity renders itself to easy algorithm

development and verification. More results are provided in appendix C.

IV. CONCLUSIONS

Cognitive computing techniques (CCT), such as analog logic and artificial neural networks

(ANN), were effectively utilized to model the decision process to detect anomalous cage frequen-
cies. Analog logic was used to model knowledge that could be expressed in terms of linguistic terms,

e.g., near, close, etc. Pearson's r was used to determine the correlation between the expected values
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and the found values. ANN's were used to define anomalous peaks in the spectral domain, Several
configurations of artificial neural networks were tested and documented. CCT seemed to offer overall

results that were similar to the analyst's manual decisions.

Despite the promising results to assimilate the manual decision, there were some concerns

that were manifested in the research. Most of the concerns were originated from the use of ANN's

during training and propagating (posttraining). Training an ANN involved selecting many v_ables

such as learning rates, the number of hidden layers, the number of hidden nodes, etc. These parame-
ters affected the convergence and success, and many trials were needed to find an effective con-
figuration. Even after a network is successfully trained, as described in section D. 1.1, the trained
network failed when tested with a new set of data.
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The self-learning capability of ANN is a double-edged sword: ANN can learn complex
mappings by itself, but such a system cannot be verified easily. The internal structure, which has

features of parallel processing, is very complicated to analyze. This inscrutability of _is a major
obstacle if an ANN system is to be used in a dynamic environment. However, understanding these

aspects of ANN, a system could be designed to utilize ANN's parallel processing and real-time

capabilities. A system designer can overlay a supervisory module to detect the output of the neural
networks such that no adverse action is taken by ANN alone. In addition, imposing explicit limita-

tions on the ANN, e.g., peak detection rather than anomaly detection as done in this research, may
simplify verification processes.

There are many features that make CCT suitable for automation of manual tasks. CCT allows

easier translation of human knowledge to computerized automation. Analog logic allows direct

translation of linguistic expression to quantitative numbers. ANN's can be implemented to optimize
its self-learning capabilities without explicit instructions. ANN can be especially beneficial when
human knowledge is difficult to be articulated.

Based on this research, the following tasks are proposed to be investigated further:

In order to make an automated system, a more advanced type of decision algorithm is

required to take into account the intensity of the peaks, discrimination of line noise from
abnormal data, and past experiences.

Better definition of 60-Hz data and other pertinent information, such as fuel pump data,
should be given to the neural networks so that cage can be discriminated from other irrele-
vant data.

Develop the system on a hardware platform using digital signal processors (DSP's), arti-
ficial neural net chips, and fuzzy logic chips. This hardware implementation would allow

real-time processing. This hardware implementation task proposal has been submitted for
code C funding.

One useful by-product of the research was preprocessor software. Based on a graphical user

interface, the preprocessor allows the user to perform simple filter functions, data displays, fuzzy
filter generation, and file input/output. In addition, this software can be used to view data, in time and

frequency domain, in two or three dimensions. A typical display of the preprocessor is shown in
figure 27.

•:'i ii _
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APPENDIX A

ARTIFICIAL NEURAL NET PARAMETERS
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28

Shift and Propagate Parameters (1 of 2)

Cotun_s 1 through 7

-0.2205 0.0255 °0.0294 =0.3790 0.1606 0.2493 -0.2605

1.4083 -1.7710 -0.8315 0.2501 1.6040 0.998/, -0.5730

-0.4572 0.3848 0.4565 0.1258 0.3068 0.1800 0.0555

0.7994 -0.1463 0.1157 1.0177 -1.1560 0.1994 1.6783

-0.8600 -0.6219 -1.2588 L0.5633 -1.2257 -0.1862 -0.8889

-0.4106 0.1560 0.0750 -0.4506 0.1744 -0.2894 -0.1357

0.2012 0.0906 -0.4790 0.0437 -0.9882 0.0499 0.4524

-0.7805 -0.1112 0.0090 -1.3214 0.1259 1.4597 -0.6140

0.5324 -0.3947 0.5893 -0.4454 1.4631 0.6267 1.6365

Columns 8 through 14

-0.0277 -0.3377 -0.5169 0.0042 -0.1252 -0.3800 °0.2069

-1.4170 0.2880 -0.8322 -0.9631 0.6908 0.7943 -0.4423

-0.1385 0.7119 0.0442 -0.2153 0.6068 0.0852 -0.0662

-0.3966 0.2238 1.4413 -0.1822 1.1730 0.7878 -1.3708

-0.9446 0.3958 -0.6383 -0.9919 1.4657 =0.2012 -0.5888

0.0522 0.0559 -0.6805 0.2698 0.0850 °0.1366 0.1491

-1.0306 -0.0861 -0.0553 °0.0379 -0.0984 °0.6341 -0.7628

-0.3548 -0.0027 -0.2003 -I.0442 0.9775 -0.7228 -1.2034

-1.3553 -0.3854 -I.4227 1.7290 0.7316 0.2531 -1.4900

Cotumns 15 through 21

0.0392 -0.1468 -0.0198 0.2012 -0.4357 0.0108 -0.0449

-I.0089 -0.4127 -0.8799 0.5255 -1.0989 -0.4742 -0.6783

0.2997 0.4256 0.6892 -0.1704 0.8726 -0.0203 0.1180

0.6210 1.0954 -1.9407 0.2896 1.5091 -0.7880 0.5451

1.0726 °0.2837 -1.4759 1.5632 °0.3636 -1.1859 1.5613

-0.2283 -0.2317 0.4223 0.3896 -0.5429 0.0884 0.0201

-0.2043 -0.2694 -0.1676 0.2632 0.3617 -0.5948 -0.0723

-0.0365 -0.5441 -0.4750 °0.4480 -0.6881 -0.4746 -0.7865

-0.8624 -0.2570 1.2159 1.6124 1.0144 0.3667 °0.7992

Columns 22 through 28

-0.2602 -0.1514 -0.0591 -0.5249 -0.I001 -0.0668 -0.3071

-0.7722 -0.4405 -0.4783 0.1422 -0.0324 0.9236 -0.3892

-0.1163 0.4848 0.2305 0.1438 0.2732 0.0927 0.3401

1.2312 -1.1187 0.3375 1.6606 -0.0280 0.9444 2.5016

-0.5115 0.2395 1.4807 -0.1937 0.7012 0.4081 -0.2519

-0.0982 0.1851 0.1720 0.0278 0.1930 0.0812 -0.2950

-0.0676 0.0020 0.4021 -0.0300 -0.5545 -0.5582 0.0947

0.1436 -0.7380 -0.7710 -0.6133 -0.6861 0.9242 -0.5875

0.1552 0.5865 0.4537 0.6174 1.1963 -0.1149 0.8880

Columns 29 through 30

-0.1742 0.2265

-0.6564 -1.1679

1.1624 0.2859

-1.2073 0.5666

0.0228 0.9671

0.3395 0.0209

-1.1591 -0.0423

-0.3808 0.3940

-0.9474 -0.5041



Rotate and Propagate (13 inputs, 8 hidden neurons, 1 output)

1st Layer Biases:
-6.0074 -4.7994

4.9373 -1.3591
5.4865 0.0055 -2.2119 -4.2985

Hidden Layer Bias:
3.3723

Weights (input-hidden)

Columns 1 through 7

0.4911 2.2876 2.2881 1.9633 -0.8116 -1.5639 1.7701
-0.9976 -1.5030 -1.5826 3.3567 -0.9871 -1.0065 -0.6162

1.8084 -1.8533 -2.4900 1.5960 1.0634 2.7502 -2.5030

3.2808 5.2286 -6.9593 -3.6218 2.2502 1.2916 1.0299

2.6379 1.4729 -0.7750 2.5572 -2.6357 1.3291 -0.0983
-0.4350 2.1847 -2.5339 2.0848 -2.0491 2.3751 -0.2495

0.8536 -4.2720 1.7930 -0.1992 -0.0690 -1.3368 0.0828
1.4957 1.1806 1.3727 -2.3245 1.0137 2.2137 1.3966

Columns 8 through 13

2.5313 2.6961 0.4243 2.9952 -0.1087 -1.0625

-1.8649 3.3189 -0.5528 1.7537 1.2935 1.8594

-2.0789 -1.7765 -0.8283 -0.5580 0.8157 -2.1509
-1.1153 0.9283 2.7956 -0.1261 2.9068 0.0385

-2.6879 -1.9364 0.4412 2.1586 1.8403 1.1141

2.8394 -0.8790 -0.3321 1.6754 -0.7196 2.0685
-0.7195 0.8262 -3.1211 -1.2096 -1.2087 -1.6676

-1.8435 -0.6152 0.8124 -3.2246 -1.9153 -2.5395

Weight (hidden-output)

Columns 1 through 7

2.3926 -2.4301 1.4169 -7.4914 1.3325 -0.5127 -1.6582

Column 8

-0.7188
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Shift and Propagate Parameters (2 of 2)

W2 =

CoLumns I through 7

-1.1118 -3.5790

Columns 8 through 9

3.3284 4.1655

-2.1850 -2.9365

B1 =

0.5335

-0.4086

0.1243

-0.6208

-0.9886

0.2876

-0.4304

0.2425

1.2105

3.8081

132 =

-0.4554

-I.0371 -2.0264

, _i'/_i_
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TYPICAL MISSION PROFILE FILE
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V 12321 R2(2485) T sch.TXT

ii i__

An Example Thrust Level Schedule
Test 2485

Time (s) Thrust Level (percent)
0 0
5 100

10 100
10 104
60 104
67 100
80 100

i•

_ _i_ _
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APPENDIX C

RELATED TEST RESULTS
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PROPAGATION RESULTS

Maxima Distribution of TwoC_1675w145L
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i I
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3OO

Input File: TwoC_1675w145L

Date • May 16, 1994

normalized input by 3.741

rotated right 9 time(s)
Bin counter from 0.0 to 1.0

305331 21 131221 1522340
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PROPAGATION RESULTS

Maxima Distribution of ThrC_1595w145L
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PROPAGATION RESULTS

Maxima Distribution of TwoC_2495w145L
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rotated right 11 time(s)
Bin counter from 0.0 to 1.0
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Maxima Distribution of ThrC_446ht13L
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